Расчетно-экспериментальное определение длительности начальной стадии разгона металлических пластин при сварке взрывом многослойных пакетов

© 2009 С.В.Кузьмин, В.П.Багмутов, В.И.Лысак, Е.С.Арестов

Волгоградский государственный технический университет
E-mail: weld@vstu.ru
Поступила в редакцию 22 января 2009 г.

Расчетно-экспериментальным путем определена продолжительность начальной стадии разгона металлических пластин при сварке взрывом многослойных пакетов. Установлены зависимости настроенных коэффициентов представленной математической модели от исходных параметров сварки.

Ключевые слова: сварка взрывом, многослойные композиты, скорость соударения, начальная стадия разгона, послойное соударение.

Duration of initial stage of the metal plates acceleration under the explosive welding of multilayered packages has been estimated by calculating-experimental way. Dependencies of the model fitting factors on initial welding conditions are determined.

Keywords: explosive welding, multilayered composites, impact speed, initial stage of acceleration, layer-by-layer impact.

Введение

При сварке взрывом многослойных металлических композиционных материалов целесообразным является использование одновременной схемы [1,2], при которой энергия одного заряда взрывчатого вещества (ВВ) расходуется на образование соединений на всех межслойных границах композита. Условия соударения и энергозатраты на образование соединения на каждой границе свариваемого пакета при параллельном исходном расположении пластин определяются, в первую очередь, значениями послойных скоростей соударения \(V_{j,i} \) (рис.1).

Последовательное изменение \(V_{j,i} \) от границы к границе происходит в соответствии с законами сохранения энергии и импульса в системе. При этом, если исходить из соответствующих представлений о критических границах свариваемости, характеризующихся величинами критических энергоатрат на пластическую деформацию металла околошовной зоны \(W_{\text{кр}} \) [1,3], расчет режимов сварки взрывом многослойных композитов сводится к определению таких послойных скоростей соударения \(V_{j,i} \) при которых на каждой межслойной границе пакета их значения были не ниже некоторого минимально допустимого с точки зрения обеспечения прочности соединения уровня и не выше некоторого предельного значения, обусловленного возможностью появления локального оплавления или связанных с ним характерных дефектов (интерметаллидных включений, трещин и др.).

Расчетное определение послойных скоростей соударения в многослойном пакете является сложной задачей и решается в довольно грубом приближении
с применением известных моделей [4-9], базирующихся на допущении о мгновенном скачкообразном изменении послойной скорости снаряжения, что по целому ряду причин не отражает реальной картины процесса и, следовательно, не позволяют достоверно оценивать характер разогна произвольной i-той пластины, вовлекаемой во взаимодействие.

В работе [10] предложена новая кинематическая модель снаряжения, согласно которой послойное изменение скоростей полета является ступенчатым, а кусочно-непрерывным, при этом зависимость \(V_\text{c}(t) = f(h_i) \) представляется не ломаной кривой [6], а семейством самостоятельных кривых разогна (рис.2).

Разгон пластины пакета после каждого акта снаряжения происходит в две стадии:

— начальная стадия, в течение которой происходит передача импульса от метаемой пластины к неподвижной. В ее пределах скорость полета за сравнительно малый промежуток времени возрастает от нуля до некоторого значения, которое можно рассчитать из закона сохранения импульса;

— конечная стадия, на которой ускорение пакета сваренных пластин происходит только под действием остаточного давления продуктов детонации.

Для описания изменения скорости полета пакета пластины на начальной стадии разгона, а также для определения ее продолжительности была предложена математическая модель [11], основанная на гипотезе не мгновенного, а постепенного вовлечения в процесс снаряжения массы ударной пластины в течение переходного процесса, когда ударяющая пластина (или пакет) замедляется, а ударяемая — ускоряется.

В рамках этой модели можно рассчитать текущую скорость перемещения тяжкей поверхности ударяемой пластины и длительность начальной стадии разгона \(\tau_\text{u} \)

\[
V_i(t_0) = \frac{1}{P_0} \int P_0(t) d\tau + \frac{\tau_i}{0} \left[\left(1 - \frac{\tau_i}{\tau} \right)^\nu - \left(1 - \frac{\tau_i}{\tau} \right)^\nu \right] d\tau
\]

(1)

\[
\tau_u = \tau_k - \tau_e = \frac{M_i V_i(t_0)}{P_0} \left(1 - \left(1 - \frac{\tau_k}{\tau_0} \right)^\nu \right)
\]

(2)

где \(M_i \) — удельная (отнесенная к единице площади) масса системы ударяющих пластин, ранее сваренных в полете; \(m_i \) — удельная масса ударяемой пластины; \(\tau_0 \) — момент снаряжения ударяющей и ударяемой пластины; \(\tau = \frac{\tau - \tau_0}{\tau_k - \tau_0} \) — приведенное время начальной стадии разгона; \(\tau_k \) — продолжительность начальной стадии разгона; \(P_{01} \) — максимальное контактное давление; \(P_{ui} \) — внешнее давление продуктов детонации на поверхность метаемой пластины; \(V_i(t_0) \) — скорость пластины в момент времени \(\tau_0 \).

В модель входят четыре подгоночных коэффициента (свободные параметры модели) \(k, n, \nu \) и \(V_c \). Первая пара коэффициентов характеризует интенсивность нарастания присоединяемой массы к ударяющей пластине, а вторая влияет на длительность начальной стадии \(\tau_c \). От соотношения между значениями \(k \) и \(n \) зависит лишь интенсивность ускорения пакета на начальной стадии разгона.
величина \(\chi \) определяет интенсивность спада контактного давления на текущей границе соударения.

Целью данной работы являлось экспериментальное определение длительности начальной стадии разгона металлических пластин при сварке взрывом многослойных пакетов и оценка подгоночных коэффициентов, входящих в математическую модель.

Методика эксперимента

Эксперименты проводили по схеме, представленной на рис.3. Под пакетом из двух стальных пластин — метаемой 3 и неподвижной 4 — размещался реостатный датчик 5, представляющий собой тонкую ниткровую проволочку. Датчик устанавливался под некоторым углом к поверхности пластины 4. За счет замыкания участков датчика на пластину при перемещении пакета во время сварки, его сопротивление, измеряемое с помощью генератора тока ГТ и цифрового запоминающего осциллографа ОСЦ, непрерывно меняется. По записываемой в процессе разгона осциллограмме (рис.4) “напряжение на датчике – время”, отражающей изменение профиля тяжёлой поверхности ударяемой пластины, можно по методике [12] пересчитать этот профиль в координатах “\(x \) – \(y \)”, а затем построить кривую разгона второй пластины пакета в координатах “скорость полёта – время” (рис.5, кривая 2). Кривая разгона метаемой пластины (рис.5, кривая 1) строится аналогичным образом при размещении реостатного датчика под метаемой пластиной. На рис.5 выделен момент соударения первых двух пластин пакета. Длительность начальной стадии разгона пакета из двух сварённых в полете пластин определяли по точке пересечения расчетной кривой 3 и экспериментальной кривой 2.

В экспериментах варьировали толщину свариваемых элементов \(\delta_1 \) и \(\delta_2 \) (индексы 1, 2 относятся к метаемой и неподвижной пластинам соответственно), а также фазу разгона метаемой пластины путем изменения отношения величины зазора на первой границе к высоте заряда \(h_1/H \), что позволяет менять величину остаточного давления продуктов детонации на поверхность метаемой пластины. В качестве материала пластин использовалась сталь Ст3.

Экспериментальные результаты

Экспериментально было установлено, что продолжительность начальной стадии разгона системы пластины на второй границе трехслойного пакета \(\tau_{\text{2}} = \tau_{\text{20}} \) существенным образом зависит от суммарной толщины свариваемых пластин \(\delta_{\text{2}} = \delta_1 + \delta_2 \).

Рис.3. Схема эксперимента: 1 — электродетонатор; 2 — заряд ВВ; 3 — метаемая (ударяющая) пластина; 4 — неподвижная (ударяемая) пластина; 5 — реостатный датчик (ниткрова проволока); ГТ — генератор тока; ОСЦ — запоминающий осциллограф.

Рис.4. Типичная осциллограмма процесса разгона ударяемой пластины.

Рис.5. Кинетика разгона трехслойного пакета алюминиевых пластин: 1 — кривая разгона метаемой пластины; 2 — начальный участок разгона пакета из двух сваренных пластин; 3 — скорость пакета, рассчитанная из закона сохранения количества движения.

Физика и химия обработки материалов 2009, №5
Методика расчета

Расчетная поверхность 2 на рис.6 строилась по формуле (2) на основании известных зависимостей \(V_i(\tau_i) \) от \(h_i, H, \) и других параметров сварки взрывом [1] с переобозначением подгоночных коэффициентов: \(k=\alpha_k, n=\alpha_n, \gamma=\alpha_{\gamma}, v=\alpha_v. \)

Если при заданных условиях сварки взрывом было получено \(N \) экспериментальных значений \(V_{i+1}^{k,\varepsilon}, (j=1, \ldots, N), \) соответствующих фиксированным относительным временам \(\tau \in [0,1], \) то, подставляя эти значения \(V_{i+1}^{k,\varepsilon} \) и \(\tau \) в (1), получаем систему \(N \) уравнений

\[
V_{i+1}^{k,\varepsilon} = f\left(\tau, a_1, \ldots, a_k\right),
\]

где функция \(f \) для краткости представляет правую часть выражения (1), а \(\lambda \) — количество параметров \(a_1, \ldots, a_k \) (в нашем случае \(\lambda=4 \)). В общем случае \(N>\lambda \). При построении системы (3) предполагалось, что все экспериментальные значения имеют одинаковую точность, в противном случае можно ввести соответствующие весовые коэффициенты.

Из приближенного решения первых, например, четырех уравнений или каким-либо другим образом определяем исходные значения параметров \(a_q = a_q^{(0)} \) \((q=1, \ldots, \lambda), \) которые далее можно уточнять по итерационной схеме:

\[
a_q^{(i+1)} = a_q^{(i)} + \alpha_q^{(i)}, \quad \text{где } \alpha_q^{(i)} — "малые" поправки.
\]

Невязки \(\varepsilon^{(0)}_q \) определяются как отклонение расчетных данных по скоростям разгона от экспериментальных значений:

\[
\varepsilon^{(0)}_q = V_{i+1}^{\varepsilon} - f\left(\tau, a_1^{(0)}, \ldots, a_k^{(0)}\right).
\]

Подставляя (5) в (3) и используя известную процедуру разложения дифференцируемой по своим аргументам функции \(f \) по степеням поправок \(\alpha_q \) с удержанием членов только первого порядка относительно \(\alpha_q \) [13], можно с учетом (5) привести систему (3) к линейному относительно неизвестных поправок \(\alpha_q \) виду:

\[
\sum_{q=1}^{\lambda} b_{jq} a_q^{(0)} = \varepsilon^{(0)}_j, \quad \text{где } b_{jq} = \frac{\partial}{\partial a_q} f\left(\tau, a_1, \ldots, a_k\right).
\]

При \(N>\lambda \) система (6) в общем случае не имеет решения. Приближенное можно решить методом наименьших квадратов, вводя сумму квадратов отклонения \(S \) в виде

\[
S = \sum_{j=1}^{N} \left(\sum_{q=1}^{\lambda} b_{jq} a_q - \varepsilon^{(0)}_j \right)^2.
\]

Необходимые условия экстремума функции \(S \)

\[
\frac{\partial S}{\partial a_q} = 0
\]

представляют собой нормальную систему уравнений, которая с учетом (8) принимает вид

\[
\sum_{q=1}^{\lambda} a_q \left(\sum_{j=1}^{N} b_{jq}^p b_{jq}^p \right) = \sum_{j=1}^{N} b_{jq}^p \varepsilon^{(0)}_j, \quad \text{где } p=1, \ldots, \lambda.
\]

Определив из (10) поправки \(\alpha_q \) и подставляя в нелинейную систему (3) или (5) новые значения параметров \(a_q^{(0)} \), найденные по схеме (4),
можно вычислить новые невязки \(\epsilon_j^{(1)} \) и в случае необходимости повторить итерационный процесс для поиска \(a_q^{(2)} \), и т.д.

Область допустимых значений параметров

\[a_1, \ldots, a_4 \]

определяется неравенствами вида [11]

\[a_q > 1 (q=1, \ldots, 4) \quad (11) \]

и естественным ограничением на скорость разгона ударяемой пластины

\[V_{i+1} (\tau_j) \leq \frac{M}{M_{i+1}} V_i (0), \quad (12) \]

где \(V_i (0) \) — скорость подлета системы из \(i \) пластин массой \(M_i \) к неподвижной \(i+1 \) пластине массой \(m_{i+1} \) в момент времени \(\tau_i = 0; M_{i+1} = M_i + m_{i+1}; \tau_j \in [0, 1] \).

Рассчитанные таким образом зависимости подгоночных коэффициентов от условий сварки взрывом стальных пластин представлены на рис. 7. Значение коэффициента \(v \) в широком диапазоне изменения исходных условий сварки изменяется незначительно и близко к 4.

Как видно из рис. 6, расчетные величины \(\tau_n \) удовлетворительно согласуются с экспериментальными значениями, что свидетельствует о возможности применения данной методики для расчета кинематических параметров при сварке взрывом.

Выводы

1. Экспериментально установлено, что продолжительность начальной стадии разгона сваренного в полете двухслойного пакета существенным образом зависит от исходных условий сварки взрывом и изменяется от 1,5 до 13 мкс.

2. Подгоночные коэффициенты представленной модели сварки взрывом многослойных пластин также зависят от исходных условий взрывного нагружения свариваемого пакета. Полученные из сравнения с экспериментом количественных зависимости этих коэффициентов от параметров сварки взрывом позволяют использовать компьютерную модель процесса для оптимизации режимов сварки взрывом трехслойных композитов.

Литература

7. Shao P.H., Zhou Z.H., Li G.H. Calculation on explosive bonding parameters of multiplayer plates under glancing...
10. Кузьмин С.В., Лысак В.И., Стариков Д.В. Кинетика соударения металлических пластин в многослойном пакете при сварке взрывом. Прикладная механика и техническая физика, 1994, №5, с.173-175.
11. Багмутов В.П., Кузьмин С.В., Лысак В.И. Модель рапон металлических пластин при сварке взрывом многослойных пакетов. ФХОМ, 2005, №6, с.47-51.