

Рис. 8. Результаты эксперимента с отливкой "зуб ковша": a - излом немодифицированной отливки; σ - излом отливки, модифицированной МКМГ19 в количестве $0,2 \%$ от металлоемкости формы путем засыпки в стояк

севым модификатором стальные отливки, благодаря чему снижена склонность к усадке, увеличена трещиноустойчивость, измельчено зерно и повышены механические свойства стали. Суммарный экономический эффект составил свыше трех миллионов рублей.

Заключение. Моделирование процесса внутриформенного модифицирования позволило оптимизировать химический состав смесевого дисперсного модификатора и подтвердило равномерность его распределения в отливке за счет дисперсности и турбулентности потока расплава.

Опытно-промышленное опробование подтвердило высокую эффективность модификатора и результаты моделирования.

Модификатор внедрен в производство с экономическим эффектом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Ковалевич Е.В. Теоретические основы и практика получения чугуна с шаровидным графитом мелкодисперсными модификаторами: автореф. дис. ... д-ра техн. наук. М.: ЦНИИИТМАШ, 1996. 34 c.
2. Чайкин В.А., Вольнов И.Н., Чайкин А.В. Использование моделирования и методов математической статистики для анализа процесса модифицирования чутуна // Заготовительные производства в машиностроении. 2009. № 4. С. 3-8.

Владимир Андреевич Чайкин, канд. техн. наук, sro_ral@mail.ru;
Андррей Владимирович Чайкин, аспирант;
Илья Николаевич Вольнов, канд. техн. наук

Автоматизированное проектирование композиционных проволок для сварки и наплавки сплавов на основе интерметаллических соединений*

Представлен алгоритм и дано описание программы компьютерного проектирования композиционной сварочной проволоки. Рассмотрен расчет проволоки, обеспечивающей в наплавленном металле легированный сплав на основе алюминида никеля. Показано, что разработанная программа AlMe-WireLaB позволяет спроектировать технологически надежсую композиционную проволоку для сварки и наплавки жаропрочных сплавов.

The algorithm and description of computer-aided design program composition of welding wire are presented. The calculation of the wire providing in weld metal alloyed alloy based on nickel aluminide is considered. It is shown that the developed program AlMe-WireLaB allows to design technologically robust composite wire for welding and surfacing of high-temperature alloys.

Ключевые слова: композиционная проволока; сварка; наплавка; интерметаллические соединения; компьютерное проектирование.

Keywords: composite wire; welding; surfacing; intermetallic compounds; computer-aided design.

В настоящее время жаропрочные сплавы на основе интерметаллических соединений успешно применяются для изготовления деталей и узлов ГТД, обладаю-

[^0]щих небольшой удельной массой, высокой коррозионной стойкостью и удельной прочностью в интервале температур $800 \ldots 1200^{\circ} \mathrm{C}$ [1]. Эксплуатация таких изделий связана с необходимостью восстановления изношенных участков, для чего применяют пайку и сварочные процессы с концентрированными источниками энергии $[2,3]$. Однако возможность исполь-

зования технологически более гибких дуговых процессов в защитных газах сдерживается из-за отсутствия присадочных и электродных проволок для сварки и наплавки сплавов на основе $\mathrm{Ni}_{3} \mathrm{Al}$, а также методик расчета их состава.

Разработанные в РФ методики проектирования композиционных проволок для наплавки сплавов на основе меди [4] и алюминидов [5] базируются на известной зависимости их химического состава от размеров исходных составляющих: проволочных компонентов, металлических лент и порошков. Это усложняет варьирование состава таких проволок и обусловливает трудоемкость расчета.

Целью настоящей работы является разработка методики и программы автоматизированного расчета композиционной проволоки, обеспечивающей в процессе сварки и наплавки высококачественный металл на основе легированного алюминида никеля $\mathrm{Ni}_{3} \mathrm{Al}$.

Материалы и методы исследования. Проектирование композиционных проволок для наплавки сплавов на основе алюминидов никеля проводили из условия обеспечения их технологической надежности и качественного рулонирования после однократного волочения. Сварочно-технологические свойства экспериментальных композиционных проволок контролировали путем записи осциллограмм сварочного тока и напряжения на дуге в процессе наплавки контрольных образцов.

Оболочку композиционной проволоки диаметром 3,0 мм формировали из никелевой ленты марки НП-2 (ГОСТ 2170) шириной 8 мм и толщиной $0,6 \mathrm{mм}$. В составе наполнителя применяли проволоки алюминия Св-А99 диаметром 1,4 мм, молибдена МЧ и вольфрама BA диаметрами 0,5 мм, ленту из тантала шириной 1,5 мм и толщиной $0,05 \mathrm{mм}$, а также порошки хрома алюмотермического и циркония. Расчет вели из условия получения наплавленного металла следующего состава, \% мас.: $0,2 \ldots 0,4 \mathrm{C} ; 3,0 \ldots 3,2 \mathrm{~W} ; 2,5 \ldots 3,0 \mathrm{Mo}$; $1,8 \ldots 2,0 \mathrm{Zr} ; 4,1 \ldots 4,4 \mathrm{Cr} ; 1,8 \ldots 2,0 \mathrm{Ta} ; 10,5 \ldots 11,2 \mathrm{Al} ; \mathrm{Ni}-$ остальное.

Экспериментальные наплавки на сталь 20 проводили с использованием композиционной проволоки в качестве присалочного и электродного материалов. В первом случае проволоку подавали в дугу, горящую с неплавящегося электрода в гелии, а во втором -

применяли постоянный ток (плюс на электроде) и обеспечивали защиту сварочной ванны аргоном.

Описание программного обеспечения AlMe-WireLaB. Алгоритм расчета композиционной проволоки реализуется в два этапа (рис. 1).

На первом этапе определяют химический состав композиционной проволоки в массовых процентах и затем проводят его перерасчет с учетом коэффициентов перехода легирующих компонентов и обеспечения стехиометрического соотношения между элементами, входящими в интерметаллическое соединение.

На втором этапе определяют геометрические параметры компонентов и уточняют состав композиционной проволоки, исходя из анализа ее поперечного сечения в обжатом состоянии.

Разработанный алгоритм реализован в программе AlMe-WireLab [6], позволяющей автоматизировать расчеты составов композиционных проволок. Расчет с использованием программы начинают с выбора типа интерметаллического соединения (рис. 2, a), после чего в основном рабочем окне программы (рис. 2, б) задают химический состав исходных материалов и их геометрические параметры. При этом применяют встроенную базу данных физических свойств исходных материалов, которую можно дополнить любым компонентом.

В программе предусмотрена возможность введения исходного материала в виде металлических порошковых или проволочных компонентов двух типов: "неле-

гированный", состоящий из одного металла, и "легированный", представляющий легированные порошки, проволоки и ленты.

После залания типов материалов вводят с учетом коэффициентов перехода в наплавленный металл значения их содержания, а также - размеры. Для проволочных компонентов задают их диаметры, а для компонентов в виде лент - их толщину и ширину (рис. 2, в). При необходимости введения компонентов в виде трубок задают их наружный диаметр и толщину стенки. Для порошков задают значения их массового содержания.

Конфигурирование расчетного состава композиционной проволоки осуществляют путем выбора способов введения исходных компонентов в состав проволоки. Они заключаются в одном случае в использовании проволок и порошков, а в другом - сформованной из ленты трубчатой оболочки и порошка, а также ленты и порошка.

Например, при выборе варианта "проволока и порошок" (рис. 2, г) программа выводит графическую за-

висимость массы вводимого проволочного компонента от его диаметра и зависимость массы порошка от массы проволочного компонента.

Методика расчета композиционной проволоки, реализуемая программой. Расчет ведут исходя из требуемой массы проволоки, заданного диаметра и площади ее поперечного сечения с тем отличием от методики [7], что отношение толщины оболочки к ее наружному диаметру является функцией, зависящей от стехиометрического соотношения k_{c} между массами элементов, входящими в интерметаллическое соединение. Если такое соединение состоит из двух элементов, то коэффициент k_{c} можно представить как соотношение:

$$
\begin{equation*}
\frac{M_{\mathrm{Me}_{1}}^{\mathrm{H}}+M_{\mathrm{Me}_{1}}^{\pi}}{M_{\mathrm{Me}_{2}}^{\mathrm{H}}+M_{\mathrm{Me}_{2}}^{\mathrm{n}}}=k_{\mathrm{c}}, \tag{1}
\end{equation*}
$$

где $M_{\mathrm{Me}_{1}}^{\mathrm{H}}, M_{\mathrm{Me}_{2}}^{\mathrm{H}}$ - массы, необходимые для обеспечения стехиометрического соотношения между первым

Рис. 3. Зависимости диаметра композиционной проволоки $D_{\mathrm{Kп}}$ от диаметра $d_{\text {А-прроаооки }}$ и числа n проволочных компонентов:
$1-4 ; 2-3 ; 3-2 ; 4-1$

и вторым элементами соответственно; $M_{\text {Ме }_{1}}^{\pi}, M_{\text {Mе }_{2}}^{\Omega}$ массы первого и второго элементов соответственно, содержащиеся в составе легирующих материалов.

Расчет масс необходимых компонентов ведут из условия обеспечения заданного химического состава в любом поперечном сечении композиционной проволоки, что при ее расплавлении в дуге способствует высокой однородности наплавленного металла или сварного шва. Если всю площадь поперечного сечения композиционной проволоки $S_{\text {о }}$ принять за 100%, то долевое участие площадей $S_{\mathrm{Me}_{1}}^{\mathrm{H}}, S_{\mathrm{Me}_{2}}^{\mathrm{H}}$ элементов интерметаллического соединения в S_{o}, будет определяться из формулы

$$
\begin{gather*}
S_{\mathrm{Me}_{2}}^{\mathrm{H}}=\frac{\left(S_{\mathrm{o}}-S_{\mathrm{a}}\right) \rho_{\mathrm{Me}_{1}}}{k_{\mathrm{c}} \rho_{\mathrm{Me}_{2}}+\rho_{\mathrm{Me}_{1}}}-S_{\mathrm{Me}_{2}}^{n} ; \tag{2}\\
S_{\mathrm{Me}_{1}}^{\mathrm{u}}=S_{\mathrm{o}}-S_{\mathrm{A}}-S_{\mathrm{Me}_{2}}^{\mathrm{H}}-S_{\mathrm{Me}_{2}}^{\lambda}-S_{\mathrm{Me}_{1}}^{A}, \tag{3}
\end{gather*}
$$

где $S_{\mathrm{Me}_{1}}^{\Omega}, S_{\mathrm{Me}_{2}}^{\text {_ }}$ - площади элементов интерметаллического соединения, занимаемые ими в составе легирующих материалов; $S_{л}$ - общая площадь всех легирующих элементов без учета площадей $S_{\mathrm{Me}_{1}}^{\mathrm{n}}$ и $S_{\text {Ме }_{2}}^{\mathrm{n}}$; $\rho_{\mathrm{Me}_{1}}, \rho_{\text {Mе }_{2}}$ - плотности элементов интерметаллического соединения.

По найденным значениям площадей $S_{\mathrm{Me}_{1}}^{\mathrm{n}}, S_{\text {Ме }_{2}}^{\mathrm{H}}$ и известным значениям плотности компонентов вычисляют массу каждого компонента проектируемой композиционной проволоки.

Если при расчете состава проволоки, обеспечивающей в наплавленном металле алюминид никеля, элемент Me_{1} вводится через никелевую трубчатую оболочку, имеющую диаметр $D_{\text {кп }}$, а элемент Me_{2} - в

$$
\begin{equation*}
D_{\mathrm{K} \Pi}=d_{\mathrm{Me}_{2}} \sqrt{\left(\frac{1-\sum_{i=1}^{n} m_{i}}{\left(\frac{1}{k_{\mathrm{c}}}+1\right) \rho_{\mathrm{Me}_{1}}}+\sum_{i=1}^{n} \frac{m_{i}}{\rho_{i}}\right) \frac{k_{\mathrm{c}}+1}{1-\sum_{i=1}^{n} \frac{m_{i}}{\rho_{i}}} \rho_{\mathrm{Me}_{2}}+1}, \tag{4}
\end{equation*}
$$

где m_{i}, ρ_{l} - массовая доля и плотность легирующих элементов.

Графической интерпретацией уравнения (4) является номограмма (рис. 3), по которой для заданного диаметра композиционной проволоки можно выбрать число алюминиевых проволочных компонентов и их диаметры.

Исследование поперечного сечения (рис. 4) готовой композиционной проволоки показало хорошую сходимость расчетных и экспериментальных значений площадей и масс проволочных и порошковых компонентов наполнителя, что обусловливает хорошую герметизацию композиционной проволоки после однократного обжатия при высокой плотности

Рис. 4. Расчетное (а) и экспериментальное (ด) поперечное сечение проволоки:
1- никелевая лента; 2 - алюминиевые проволоки; 3 - молибденовая проволока; 4-вольфрамовая проволока; 5 танталовая фольга; 6 - смесь порошков циркония и хрома

 № 4. C. 22-26.

Рис. 5. Осциллограмма процесса дутовой наплавки с использованием разработанной композиционной проволоки

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Каблов Е.Н., Оспенникова О.Г., Базылева О.A. Литейные конструкционные сплавы на основе алюминида никеля // Двигатель. 2010.
2. CAY Vedat Veli, OZAN Sermin. Superalloys and application areas // Doğpu Anadolu Bölgesi Arastirmalari. 2005.
3. Малый А.Б., Бутенко Ю.В., Хорунов В.Ф. Свариваемость высоколегированных термоупрочняемых сплавов на никелевой основе // Автома-
стыкового соединения кромок оболочки по длине проволоки.

В процессе дуговой наплавки с использованием разработанной композиционной проволоки электрические параметры режима (ток $I_{c B}$ и напряжение дуги U_{n}) стабильные (рис. 5), короткие замыкания отсутствуют, что свидетельствует об относительно равномерной плотности сварочного тока по ее сечению.

Структура хорошо сформированного наплавленного металла состоит из дендритообразного $\gamma^{\prime}-\mathrm{Ni}_{3} \mathrm{Al}$ твердого раствора, неупорядоченного твердого раствора алюминия в никеле, а также многочисленных карбидных фаз различного состава и происхождения (рис. 6). Сварочных дефектов в наплавленном металле не обнаружено, что подтверждает высокое качество композиционной проволоки.

Вывод. Разработанная методика позволяет рассчитать состав и конструкцию композиционной проволоки, обеспечивающих при электродуговой сварке качественное формирование и заданный химический состав жаропрочного наплавленного металла на основе легированного $\mathrm{Ni}_{3} \mathrm{Al}$.

тическая сварка. 2005. № 5. С. 24-27.
4. Гавров Е.В. Композиционные полиметаллические электродные проволоки // Автоматическая сварка. 2000. № 8. C. 10-12.
5. Цурихин С.Н., Соколов Г.Н., Лысак В.И. Расчет состава композиционной проволоки для наплавки жаропрочного сплава на основе алюминида никеля $\mathrm{Ni}_{3} \mathrm{Al}$ // Известия вузов. Черная металлургия. 2008. № 4. C. 41-44.
6. Программное обеспечение расчета конструкции и состава композиционной проволоки для наплавки сплавов на основе интерметаллических соединений AlMe WireLab - $1 /$ Ю.Н. Дубцов, И.В. Зорин, С.Н. Цурихин, Г.Н. Соколов // Свидетельство об официальной регистрации программы для ЭВМ № 2010616144. М.: РОСПАТЕНТ, 17.09.2010.
7. Иоффе И.С., Зеленова В.И. К вопросу выбора конструкции сечения порошковой проволоки // Сварочное производство. 1986. № 12. С. 2-3.

Илья Васильевич Зорин, канд. техн. наук, naplavka34@gmail.com;
Юрий Николаевич Дубцов, аспирант;
Геннадий Николаевич Соколов, д-р техн. наук; Владимир Ильич Лысак, д-р техн. наук

[^0]: * Работа выполнена при финансовой поддержке государственного контракта № 16.740.11.0017 Министерства образования и науки РФ.

